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Abstract

Deep Generative Models (DGMs) have become ubiquitous in today’s world. Over

the past decade, they have revolutionized fields such as computer vision, computer

graphics, natural language processing, and even engineering design [4, 37] and are

starting to become a staple in our day to day lives. Therefore, in this survey, our goal

is to establish the basic framework of these DGMs and explain how three of the most

popular DGMs fit into that framework to learn distributions and create samples. In

particular, this survey will discuss Variational Autoencoders (VAEs) first introduced

in 2013 by [24], Generative Adversarial Networks first introduced in 2014 by [16],

and finally Denoising Diffusion Models (DDMs) first introduced in 2015 by [43]. In

addition to their basic functionality, the major advantages and drawbacks of each of

these models will be discussed in the context of the deep learning trilemma [56] followed

by a discussion of the research being conducted that aims to mitigate the drawbacks

or otherwise improve the performance of these DGMs.

1 Introduction

Generative modeling covers a broad area of machine learning which revolves around the idea

of learning an approximation Pg(X) to a true data distribution Pt(X) over some set of data

points X in a potentially high-dimensional space X [11]. Note that these models focus on

approximations of Pt(X) because for most cases, the explicit distribution Pt(X) cannot be

1



determined. The aspect that makes these models generative is that new samples can then

be generated from the approximate distribution Pg(X) which simulate the characteristics of

samples from the true data distribution Pt(X).

1.1 Non Deep Learning Models

Historically, research on generative modeling has focused on non-deep learning methods like

Gaussian Mixture Models (GMMs), Hidden Markov Models (HMMs), and Latent Dirichlet

Allocation (LDA) [18]. GMMs try to approximate distributions of certain classes in data

by modeling them as normal distributions and learn the means, covariance matrices, and

mixture probabilities of each class that best approximate the true data distribution. HMMs

can generate state sequences by learning sequences called Markov Chains which describe

state-transition probabilities. Both GMMs and HMMs are trained using expectation max-

imization [59]. Finally, LDA is a probabilistic model for topic modeling, which can learn

thematic structures within a collection of data. In LDA, each data point is assumed to be

some mix of topics and the components of each data points are generated by one of those

topics. For a more in-depth survey of these traditional methods, the reader is directed to

[18]. These “traditional” approaches to learning data distributions have, however, recently

been eclipsed in performance by the deep learning generative models covered in this survey.

1.2 Deep Learning Generative Models

Modern deep learning generative models (DGMs) were first introduced just over a decade

ago at the time of writing this report and have, in that time, seen tremendous growth in per-

formance and utility. These DGMs are now used in a large variety of tasks including artistic

applications such as novel image generation [9, 16], image denoising and in-painting [14, 57],

voice and music generation [2, 13], and recently, even video generation [21, 49]. They have

also seen application in non-artistic domains such as in the discovery of new compounds for
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chemistry [46], aid in engineering design [37], and medical imaging [45]. These DGMs follow

the same basic principles as traditional generative methods in that they attempt to estimate

the true data distribution. However, these models often achieve this task by creating a map-

ping from some latent distribution P (z) to the approximation of the true data distribution

Pg(X). For DGMs, the function that maps a vector from the latent variable to the generated

distribution is represented by some neural network. This neural network is trained on a loss

function which is based on some metric which describes the difference between the generated

distribution and the target distribution (see figure 1). The three most popular DGMs which

include Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), and

Denoising Diffusion Models (DDMs) formulate the training of this neural network and the

corresponding loss function in different ways which we will explore in this survey.

Figure 1: The general deep generative model framework. The goal of DGMs is to learn a mapping
from some latent space to an approximation of the true target distribution. This mapping is learned
via a neural network trained on a loss function that quantifies the difference between the generated
and true data distributions. Figure courtesy of OpenAI.

1.3 The Deep Learning Trilemma

Each of these DGMs has their own strengths and weaknesses which enable their use in par-

ticular applications and none of the three model paradigms on their own provide a definitive

solution for all problems that may require the use of a DGM. Specifically, each of these mod-

els suffers from one of three drawbacks that are handled well by the other two models. For

example, VAEs are quick to train and create samples and they cover the distribution of the
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training data well. However, they tend to produce poor results compared to the other two

models. GANs on the other hand, produce high quality samples quickly, but are notoriously

difficult to train and do a poor job of covering the variance of the target distribution. Finally,

DDMs produce the highest quality samples that cover the modes of the distributions well but

are by far the most expensive to train and generate samples. The trade-offs between these

models is what is known in the literature as the Deep Learning Trilemma [56] (see figure 2).

Consequently, much of the research in this field has focused on overcoming the drawbacks of

each of these models in the hopes of creating the optimal DGM with good quality samples

which cover all the modes of the data and is quick to train and create samples.

Figure 2: The generative learning trilemma. Figure courtesy of [56].

1.4 Survey Structure

The structure of the remaining sections of this survey are as follows. In §2, 3, and 4, we will

cover the formulations of VAEs, GANs, and DDMs respectively and discuss each of their

drawbacks, applications, and research trends. Notably, in §4.1, we take a detour to discuss

evaluation metrics for DGMs. Then, in §5, we will discuss recent literature that tries to

tackle the deep learning trilemma using a variety of methods including improving existing
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DGMs or combining DGMs together. Finally, we will conclude in §6 by reviewing the content

of the survey and discuss our expectations and desires for future research directions.

2 Variational Autoencoders

2.1 Autoencoders

VAEs can be thought of as an extension of the traditional autoencoder framework, so we

will first discuss the autoencoder formulation. As the name suggests, an autoencoder is a

neural network that can encode itself. Unlike what we will see in GANs, autoencoders start

directly from the feature space representation of the data x with some dimensionality n and

encode x down to a latent z space representation with some dimensionality m such that

m < n and z = E(x) where E represents the encoder network. Then, the second half of the

autoencoder known as the decoder takes z as input to create an approximation of the original

input x̃ = D(z) = D(E(x)) where D represents our decoder network. The loss function L is

the reconstruction loss which can be expressed simply as L = ∥x− x̃∥2. The simplest linear

single-hidden-layer autoencoder is effectively the same as Principle Component Analysis

(PCA) [55]. However, compared to traditional PCA methods like Eigenvalue Decomposition

(EVD) or Singular Value Decomposition (SVD), the advantage of autoencoders is that we

are not making any assumptions about the linearity, rank, or eigen/singular vectors of the

latent space. Autoencoders are simply learning some non-linear mapping from the input

space to the latent subspace that is capturing something meaningful about our data [54, 55].

Like in many machine learning models, we are giving up the clear mathematical foundation

of methods like PCA for a black box that is learning some complex non-linear mapping.

Autoencoders have been shown to be very good for tasks like image denoising and image

in-painting [14, 57]. However, on their own, they are typically not considered to be generative

models in the usual sense because a random latent vector passed in to the decoder is not

guaranteed to make a meaningful output. This is because the latent space of autoencoders
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make no guarantees on structure. Choosing a latent variable that is even slightly different

than a known latent variable which produces a valid output is likely to produce a random

result (see figure 3). For this reason, a common extension of autoencoders is to include a

regularization term to the loss function so that more complex mappings have higher loss.

This in turn makes the autoencoder less sensitive to changes in the input x and the latent

space representations z, making the autoencoder more generalizable and allows minimal

traversal in the latent space. This regularization can be simply expressed as the sum of

squared weights of our encoder and decoder networks [1].

Figure 3: Left: A 2D latent space representation of encoded MNIST images for a simple autoen-
coder trained on a subset of MNIST. Right: The decoded outputs from evenly spaced locations in
the latent space. We can see that with a simple autoencoder, the learned latent representation has
some structure but the distinction between digits is not well defined and the sizes of regions for
different digits is also not consistent.

2.2 Extending Autoencoders to VAEs

Variational Autoencoders take the idea of creating a more structured latent space a step

further by adding additional constraints to the encoder which enforce the latent space map-

pings to be more Gaussian. With VAEs, we are trying to learn a latent representation p(z)
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such that the mapping p(x|z) represented by our decoder is meaningful in some way, i.e.,

such that the resulting p(z) allows us to approximate p(x) which can be described as:

p(x) =

∫
p(x|z)p(z)dx. (1)

But, to do that, we will need to learn a mapping p(z|x) which is generally intractable. So

instead, we learn a simpler prior distribution which is a good approximation of our desired

p(z) which allows us to then approximate p(z|x) without having to learn it explicitly. In

particular, we can decide before hand that we want our latent distribution p(z) to be a

normal (Gaussian) distribution with mean 0 and an identity covariance matrix. Then, our

encoder qϕ(z|x) which approximates p(z|x) should map, on average, p(x) to a Gaussian

distribution for p(z) [23].

However, if we only focus on training our encoder to map to a Gaussian distribution, then

we will not learn a meaningful latent space p(z). Instead, in addition to the reconstruction

loss used for autoencoders, we want to introduce a measure of the difference between our

learned latent distribution and our desired N (0, I) Gaussian distribution. The measure used

is the Kullback-Leibler (KL) divergence [23, 26]. The KL divergence between real-valued

distributions P and Q can be expressed as:

DKL(P∥Q) =

∫
p(x) log

(
p(x)

q(x)

)
dx. (2)

For VAEs, our encoder no longer maps down to a single point but rather to an n-dimensional

Gaussian (where n is the dimensionality of our latent space) and the decoder takes a collec-

tion of points from the latent Gaussian distribution to produce multiple images which are

compared to the original input to determine the reconstruction error. Due to this formula-

tion, small deviations in the latent distribution will still produce good examples since they

have to handle variations in the latent space.
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Figure 4: A VAE learns a stochastic mapping from some x-space with a complicated distribution
to a relatively simple latent z-space, such as a spherical Gaussian. The generative model learns the
joint distribution pθ(x, z) = pθ(z)pθ(x|z) where pθ(z) is the prior distribution in the latent space
and pθ(x|z) is the stochastic decoder. The encoder qϕ(z|x) is an approximation of the intractable
posterior pθ(z|x). Figure courtesy of [23].

2.3 The VAE Training Objective

Kingma et. al. ([23]) show that the training objective for VAEs (the log-likelihood of p(x))

can be expressed as the sum of the evidence lower bound (also known as the variational

lower bound) (ELBO) and the KL divergence between our encoder’s latent space mapping

and the desired latent space mapping:

log pθ(x) = Eqϕ(z|x)

[
log

[
pθ(x, z)

qϕ(z|x)

]]
+ Eqϕ(z|x)

[
log

[
qϕ(z|x)
pθ(z|x)

]]
(3)

= ELBO +DKL(qϕ(z|x)∥pθ(z|x)). (4)
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Figure 5: A 2D MNIST latent space visualization for VAEs with different β values from left to
right: 1.0, 0.5, 0.1, 0.05. When β >> 1, there will be a collapse in any structure in the latent space
and when β << 1, the latent space will approach a look-up table. Figure courtesy of [29].

Since the KL divergence is necessarily non-negative, the ELBO is also a lower bound on the

log-likelihood of p(x). Note that most VAEs incorporate a β parameter which determines

weighting of the KL divergence in the loss function which effects how strict the adherence

to a Gaussian distribution for the latent space representations should be (see figure 5). For

a more thorough description of VAEs, readers are directed to the excellent tutorials given in

[23] and [11].

2.4 VAEs in the Deep Learning Trilemma

Compared to normal autoencoders, VAEs actually allow us to create meaningful novel data

due to its structured latent space. We can now generate examples using arbitrary (or even

conditional) vectors in our latent spaces that are less likely to be noise. However, even in

well-trained VAEs, the generated images from latent vectors interpolated between the latent

representations of true examples still tend to be blurry like those seen in figure 3. However,

autoencoders by their nature are very good at capturing the variation in the data distribution

and compared to the other DGMs we will discuss are relatively quick to train and produce

samples from since we only need to pass latent vectors through a single neural network.

One of the key advantages of VAEs is that we can utilize their latent spaces for a variety of

applications. For example, similar to how one could do classification on a reduced dimension

representation of data with a process like PCA, VAEs can make classification tasks easier
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by learning class boundaries in the latent space. Consider figure 5 for example where the

MNIST digits are clearly differentiated. By extension, these latent representations can make

creating captions or labels for images a lot easier as well [34].

3 Generative Adversarial Networks

One of the biggest challenges for DGMs is coming up with a good loss function for training

the networks, i.e. a metric that can tell us how good the generated data is (see figure 1). In

VAEs and, as we will see later for DDMs, the choice of loss is the reconstruction loss which

directly compares reproduced images to their original counterparts using some Lp norm.

However, this approach has a major drawback – namely that a perfectly reproduced image

that is slightly shifted can have a higher loss than an incorrect image that happens to have

more overlap. An alternative for the loss could be to use another network trained specifically

to determine if a given sample is part of the training data set. This is the approach suggested

by Goodfellow et. al. in their seminal work on Generative Adversarial Networks [16].

Figure 6: The GAN framework consists of the generator G which takes in a random low dimen-
sional vector to produce an image and the discriminator which takes in either the generated image
or a true image from the training data and determines if the produced sample is real or fake. Figure
courtesy of [3].
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3.1 The Two Player Formulation

GANs learn to produce examples that closely resemble the training data using an adversarial

two player game where each player is a neural network. The first network is the generator G

which takes in a low-dimensional random noise vector z and produces a sample G(z) to try

to fool the second network, the discriminator D which tries to determine if a given sample

is from the real data or if it is a fake sample produced by the generator. This game can be

represented as a minimax formulation with a value function V (G,D) defined by:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (5)

Each network then has its own goal. The generator is trying to maximize its probability of

fooling the discriminator or equivalently, minimize the loss function log(1−D(G(z)). Note

that D(G(z)) is the discriminators prediction of whether the generated sample G(z) is a true

or fake with 0 corresponding to a prediction that G(z) is definitely fake, and 1 corresponding

to a prediction that G(z) is definitely real. Meanwhile, the generator is trying to maximize

its probability of assigning the right label to real samples D(x) and the fake, generated

samples D(G(z)). Note that in equation 5, x ∼ pdata(x) and z ∼ pz(z) denote that x is

a sample drawn from the true data distribution, and z is a sample drawn from the latent

distribution. Ideally when training these networks, the two should improve in lock-step with

each other. If the discriminator is too good initially, the generator will never be able to learn

what it should change in its network to fool the discriminator. Ultimately, by the time the

generator has completed training, the discriminator should have a 50/50 chance of correctly

identifying any given image – i.e., the generated images should be indistinguishable from the

true images. Once training is complete, the discriminator is usually thrown away. Note that

we cannot use the discriminator as a classifier to determine real or fake images because we

have created the generator which was explicitly designed to fool it.
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3.2 Overcoming Mode Collapse

In practice, GANs have been able to achieve high fidelity and even pass visual Turing tests for

image generation where humans were also unable to distinguish between real and generated

samples [41]. However, GANs suffer a major drawback. Let’s consider again that in the

GAN formulation, we are not predefining what a “good” image looks like for the generator.

Instead, we are simply training the generator to fool the discriminator. The generator notably

never sees the actual images. Consequently a common side-effect of this framework is that

the generator can learn a few examples which consistently fool the discriminator, causing the

generator to repeatedly produce the same output for various random input latent vectors.

This phenomenon is known as mode collapse and can be more generally described as when

the GAN can only produce one/a few modes of a distribution such as only producing one

type of cat or producing an image of a cat with only one type of framing (e.g., a close up shot

of the cat’s head) [30, 41, 47]. Various approaches to solve this issue have been proposed,

all of which involve an adjustment or addition to the basic two-player formulation.

The first approach is minibatch discrimination as proposed by [41]. They clarify that

the reason why mode collapse occurs is because, for a given batch, it is possible for the

gradient of the discriminator to point in the same direction for many similar inputs. Since

the discriminator in the standard GAN formulation handles each example independently,

there is no way to tell the generator to produce more variety in its outputs. This results in

the generator re-producing the same output that the discriminator currently believes is real.

But, even after the discriminator learns that the result is fake, gradient descent is unable

to separate the identical outputs of the generator and learning stops. With this in mind,

[41] propose a modification to the discriminator, allowing it to evaluate multiple examples

(i.e., a minibatch) at once and measure the closeness of the samples in that minibatch. The

discriminator, then, still evaluates the probability that a given sample is real, but now can

use the closeness metric to adjust its gradients. The authors of [41] show that this adjustment

allows them to train a GAN to create realistic and visually appealing samples much more

12



quickly.

However, [30] point out that the minibatch discrimination “trick” is too computationally

expensive, preventing GANs that use it from scaling up to larger datasets like ImageNet.

Instead, they propose a different modification to the GAN framework to mitigate mode

collapse which they call Dual Discriminator GANs (D2GANs). Instead of the standard two-

player GAN formulation, they propose a three-player formulation consisting of one generator

and two discriminators, one which favors outputs from the data and another which favors

outputs from the generator. They base their argument on combining the statistical properties

of minimizing the asymmetric KL divergence (i.e., between data and model) which they

claim has been shown to cover multiple modes of the data but is likely to produce poor

samples, and minimizing reverse KL divergence (i.e., between model and data) which tends

to produce better samples but can lead to mode collapse. They argue that the standard GAN

formulation leads to mode collapse because it minimizes Jensen-Shannon (JS) divergence (a

symmetric metric that combines KL and reverse KL divergences), which has been empirically

shown to mimic the effect of minimizing reverse KL divergence. Instead, they show that

training a generator to fool their dual discriminators (which act as proxies to KL and reverse

KL divergences) results in the best of minimizing both KL divergences and avoids mode

collapse.

When it came to measuring performance, [41] focused on general perception tests and

did not evaluate mode collapse specifically while [30] extensively showcase how their method

overcomes mode collapse. In particular, [30] present a convincing mathematical foundation

for their approach and their presentation of D2GANs performance on a synthetic data set

was particularly compelling. Granted, the objectives of the two papers were different and

[30] were specifically targeting the issue of mode collapse. Regardless, the dual discriminator

approach presented in [30] is also more intuitive and may be easier for readers to implement

as a simple architecture modification compared to the minibatch discrimination technique

described by [41].
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3.3 Deep Convolutional GAN

In terms of high performance GAN models, one of the most popular is Deep Convolutional

GAN (DCGAN) introduced by [35]. Convolutional Neural Networks (CNNs) are known

for their ability to learn spatial information for data like images by learning convolutional

filters (also known as kernels) that can describe patterns in images. As a result, CNNs

have often been used for image classification tasks [31]. DCGAN adapts CNNs for the

discriminator (which is effectively just a classifier) but also utilizes a CNN for the generator.

However, instead of the usual convolution process of reducing higher dimensional data down

to lower dimensions by pooling the results of convolutions, [35] reverse the process for the

generator, taking in a 100 dimensional z vector and “up-convolving” to the original image’s

dimensionality.

One particularly interesting thing that [35] show is that, like for VAEs, it is possible to

explore the latent space of GANs to produce examples that mix properties of different types

of images. Note that this includes an extension to DGMs for conditional generation which is

not really discussed in this report, but it is too interesting not to include. Specifically, [35]

show that they can add and subtract the latent space vectors of different classes to produce

new examples that combine features of the classes (see figure 7). This in turn suggests a

highly-structured latent space that can be traversed similar to those seen for VAEs. In fact,

[35] also depicts the effect of interpolation between examples in the latent space, successfully

showing, for example, interpolating between lighting in a room in the morning to a very

similar room being lit in the evening.

4 Denoising Diffusion Models

While denoising diffusion models were first introduced in 2015 by [43], they did not take

over GANs in popularity until 2021 when [9] showed that DDMs were able to overtake the

performance of GANs in image generation. Since then, DDMs have been the primary models
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Figure 7: The authors of [35] were able to perform vector arithmetic in the latent space of DCGAN
to produce examples which combine features of different classes. Figure courtesy of [35].

used for commercial AI image generation including OpenAI’s Dall-E, Google’s Imagen, and

Stability AI’s Stable Diffusion. Compared to GANs, diffusion models have a number of

preferred qualities. For example, DDMs have more stable training since they do not need

to balance two networks simultaneously and are not prone to mode collapse. Additionally,

unlike GANs, DDMs aremaximum likelihood estimators. This means that DDMs can directly

maximize the likelihood that the learned distribution approximates the true data distribution

and hence are, similar to VAEs but opposed to GANs, good at learning the diversity of the

data.

4.1 Evaluating Generative Models

In this section, we will take a brief detour to explore how generative models are evaluated

inspired by the claim in [9] that diffusion models beat GANs. Coming up with a metric

for evaluating the performance of generative models is difficult since there is no real way to

quantify, for example, artistic intent or style. Many papers which discuss the performance of

DGMs often end up relying on qualitative measurements and resort to manual inspection of

visual fidelity. However, this approach is subjective, time consuming, and potentially mis-

leading. This has led to the creation of several metrics which aim to quantify the performance
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of DGMs [58].

A common approach for determining good metrics is to determine which metrics closely

match with manual inspection (i.e., metrics that align closely with human judgement). Of

the many metrics proposed, the two most common are the Inception Score (IS) introduced

in [41] and the Fréchet Inception Distance (FID) score introduced in [19]. Note that FID

score was the metric used to support the claim that diffusion models beat GANs on image

synthesis in [9]. The IS is among the most used metrics in the literature. It uses a pretrained

inception network M from [48] trained on ImageNet [8] to compute

IS(Pg) = eEx∼Pg [KL(pM(y|x)∥pM(y))] (6)

where pM(y|x) is the label distribution of the data x as predicted by M, pM(y) is the

marginal of pM(y|x) over the probability measure Pg [58]. Notably, IS only works for small,

square images and can return artificially high scores for small sample sizes and artificially

low scores when produced samples include unusual images that were not part of the original

data set. Similar to IS, FID also utilizes the inception network from [48]. FID is based on

the idea that some real distribution pr(.) and some generated distribution pg(.),

pr(.) = pg(.) ⇐⇒
∫
x

pr(x)f(x)dx =

∫
x

pg(x)f(x)dx (7)

where basis functions f(.) span the space in which pr(.) and pg(.) live. If we let f(x) be

first and second degree polynomials, we can determine the first and second moments of the

distributions which can give us the mean and covariances of the Gaussians which approximate

the distributions. Then, if we let µr, Cr be the mean and covariance of the real distribution

and let µg, Cg be the mean and covariance of the generated distribution, the FID of these
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distributions can be calculated as:

d2((µr, Cr), (µg, Cg)) = ∥µr − µg∥22 + Tr(Cr + Cg − 2(CrCg)
1/2). (8)

For more information regarding different evaluation metrics for DGMs, we refer the reader

to [58]. Note that even these popular metrics have bias and are not perfect measures. There

continues to be research in improving these metrics as seen in [5].

4.2 The DDM Formulation

Diffusion models can be described in one sentence as reversing a thermodynamic process.

Consider the analogy of a drop of paint in water. When that paint is first dropped into

the water, it still holds most of its initial shape but over time, the paint droplet diffuses

throughout the water until it is completely mixed. Now, with a diffusion model, what we

are trying to learn is the process of transforming that fully mixed water back into one of

the potential original paint droplets that could have produced that fully-mixed solution. In

practice, for images, this process is done by adding random Gaussian noise to an image

until it is entirely white noise then learning a reverse process which iteratively removes the

noise until we get back to some noise-free image (see figure 8). Note that a good portion of

the following section is based on the excellent tutorial given in [25] and we recommend this

resource for readers interested in a more thorough description. This section is also based on

[20] which describes the particular probabilistic denoising diffusion process shown below.

The forward diffusion process adds noise to an image in T steps where the image xt can

be generated from xt−1 using the kernel defined by:

q(xt|xt−1) = N (xt;
√

1− βtxt − 1, βtI). (9)

Notice that we are also slightly downscaling the image at each step by the βt parameter.
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Figure 8: DDMs consist of two processes, the forward diffusion process and the learned reverse
denoising process. For the forward process, we iteratively add noise until our image is entirely
white noise and in the reverse process, we use neural networks to learn how to produce iteratively
less noisy images until we return to a noise-free image. Figure courtesy of [25].

Since we are dealing with Gaussian distributions, we can express the total noise from x0 to

xT as a product of each individual step:

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1). (10)

For the forward process, to get an image at step t, we do not need to generate each inter-

mediate sample. Instead, again since we are using a simple Gaussian kernel, we can define

a scalar ᾱt

ᾱt =
t∏

s=1

(1− βs) (11)

such that the diffusion kernel for time step t can be expressed in terms of that scalar as

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (12)

Therefore, to get the diffused image at some time step t, we can just apply the diffusion

kernel for time step t to the initial input image x0:

xt =
√
ᾱtx0 +

√
(1− ᾱt)ϵ (13)
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where ϵ ∼ N (0, I). Note that we set the βt values such that ᾱT → 0 so

q(xT |x0) ≈ N (xT ;0, I). (14)

This way, at the end of the diffusion process, the diffused data will have a normal Gaussian

distribution. As a side note, one thing that we have control over is how much noise we add

in each step. The determination of how much noise is added for each iteration is known in

the literature as the noise schedule and the particular decision for what noise schedule to

use is an engineering design choice for any particular model. Note that similar to equation

1, we can express the diffused data distribution q(xt) in terms of the input data distribution

q(xt) as:

q(xt) =

∫
q(x0,xt)dx0 =

∫
q(x0)q(xt|x0)dx0. (15)

Therefore, we can sample xt ∼ q(xt) by first sampling x0 ∼ q(x0) then sampling xt ∼

q(xt|x0).

Now, for the reverse process, we begin with a noisy sample xT ∼ N (xT ;0, I) and we want

to iteratively sample xt−1 ∼ q(xt−1|xt) where q(xt−1|xt) is the true denoising distribution.

However, determining the true denoising distribution is generally intractable. So, instead,

if βt is small, we can approximate the reverse process by assuming each reverse step is

also approximately normal with some mean and variance. Then, we can train some neural

network to learn the mapping from a noisy image to a slightly less noisy image. More

specifically, we are learning the approximate denoising distribution

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I) (16)

where µθ(xt, t) is our trainable neural network such as a U-net or denoising autoencoder.

Also, we are often not learning how to necessarily produce a less noisy image directly, but
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rather trying to determine the noise itself that was added to the image at each step. To

actually train these neural networks, we can utilize variational inference, i.e., the variational

upper bound, similar to what is done for training VAEs. However, the mathematics that

describe this process and the loss function used are rather complicated, so the reader is

referred to [25] for more details. Note also, that this formulation makes diffusion models

inherently slow because to go from random noise to an image, we can only take small steps.

Consequently, training DDMs is expensive since we have to train multiple individual neural

networks, one for each step. This also makes creating samples from DDMs substantially

more expensive since we need to pass our initial noisy image through several denoising

neural networks instead of the single neural networks used to create samples for VAEs and

GANs.

5 Tackling the Deep Learning Trilemma

As mentioned in §1.3 and throughout this report, none of the current DGM frameworks

encapsulate all three of the desiderata for generative models (see figure 2). In this section,

we will review some of the recent literature that tries to tackle the trilemma by either

improving existing model architectures or combining architectures together. Note that we

already mentioned a few techniques for improving the mode collapse problem of GANs in

§3.2 and many more research papers have demonstrated other techniques not mentioned in

the sections below including [7, 22, 44, 50].

5.1 Vector Quantized VAEs and GANs

Vector quantized VAEs (VQVAE) first introduced in [52] and later improved by [36], update

the VAE formulation to create higher quality samples which can rival the fidelity of GAN

models but avoid the mode collapse and low diversity issues present in GANs. The way they

achieve this is by using discrete latent variables instead of continuous normal distributions.
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In normal VAEs, we assume the posterior q(z|x) and prior p(z) are normally distributed with

diagonal variance and the encoder predicts the mean and variances of the posterior. However,

in VQVAEs, the posterior and prior distributions are categorical. A new vector quantization

layer is added to the framework in place of the standard latent space in VAEs which represents

a dictionary of embeddings. The output of the encoder is passed to this vector quantization

layer which then calculates the distance of the encoded latent representations to each of the

dictionary embedding to determine the closest embedding. The chosen embedding is then

used to generate samples through the decoder. For training VQVAEs, we are training the

encoder and decoder like in normal VAEs but now also training the dictionary embeddings

in the vector quantization layer. With this discretization formulation, we lose the ability to

interpolate between categories like we could with traditional VAEs. However, many real-

world objects are discrete and interpolating between them does not make much sense. For

example, we do not really want to interpolate between, say, a “car” and a “cat”. Therefore,

by discretizing these categories, we can more easily model each category instead of needing

to learn the potentially complex interdependencies between categories. As a side note, the

authors of the paper also claim that their VQVAE model does not suffer from posterior

collapse which normally is an issue for VAEs where the signal from an input x is too weak or

noisy causing the z samples drawn from the posterior q(z|x) to be ignored by the decoder.

VQVAEs have also since been extended to video generation [53, 60], and text-to-speech

generation [62].

Vector quantized GAN (VQGAN) [12, 63] is an improved version of VQVAEs that intro-

duce an adversarial loss to improve reconstruction even further. Like in VQVAEs, VQGANs

first encode images down to lower dimensional discrete latent codes. Then, they use non-

local attention blocks which are similar to transformers which allow them to capture more

distant interactions in the image using fewer layers. Notably, both VQVAEs and VQGANs

use a CNN framework. For VQGANs, the reason they use transformers is to model distant

relationships in pixel space for high resolution images. They use the transformers to model
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the composition of a high-resolution image in terms of many smaller CNNs so they train

those many small CNNs instead of a single large CNN.

5.2 Latent Diffusion Models

Latent Diffusion Models (LDMs) introduced in [39] are very similar to DDMs except that

they apply the diffusion process to a latent representation of images instead of working in the

original pixel space. Hence, they can be considered a combination of diffusion models with

AEs. By performing diffusion in the latent space, LDMs are far more computationally effi-

cient to train and generate samples, allowing for cheaper training and even higher-resolution

image generation. They also make conditional generation much easier since those conditions

can be applied to the lower dimensional latent space. The architecture for LDMs is very

similar to traditional DDMs except that they begin the diffusion process by first passing the

image through an encoder which creates the initial mapping to the latent space. Then, the

forward and reverse diffusion processes occur in the latent space along with and condition-

ing. To incorporate conditioning, LDMs utilize cross-attention in each denoising U-net in

the reverse process (see figure 9).

Figure 9: The architecture for latent diffuse models which perform the diffusion process and
conditioning in the latent space representation of the images. Figure courtesy of [39].
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5.3 Denoising Diffusion GANs

Denoising Diffusion GANs (DDGANs) first introduced in [25] aim to overcome the slow

sampling of DDMs by replacing the multiple denoising U-Nets or autoencoders in the reverse

diffusion process with fewer conditional GANs. They argue that the slow sampling of DDMs

is caused by the Gaussian assumption in the denoising step which is justified only for small

steps. This necessitates a very large number of neural nets in the reverse process. To enable

larger denoising with larger steps and consequently reduce the total number of denoising

steps, they introduce the use of multi-modal conditional GANs. Due to the drastically

reduced number of reverse steps, their model boasts up to a 2000x improvement in sample

generation while outperforming traditional GANs in mode coverage and sample diversity.

They incorporate the GANs by training a generator to reproduce an approximation of the

original x′
0 from a noisy image xt to then create a fake less noisy image x′

t−1 which is then

compared with a discriminator to the actual less noisy image xt−1 (see figure 10).

Figure 10: The model architecture for DDGANs which improve the sampling speed of DDMs by
replacing the denoising U-Nets with fewer reverse steps utilizing a GAN architecture to learn the
noise. Figure courtesy of [25].
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6 Conclusion

With the ubiquity of DGMs today, this survey aimed to provide a basic foundation of the

three most popular DGMs along with their limitations and current research trends. In this

survey, we briefly explored historic approaches for generative learning before introducing the

essential deep learning formulation used by today’s DGMs. We also introduced the deep

learning trilemma which provides a framework for putting into perspective the advantages

and disadvantages of each of the DGMs. Then, we described in some details the formulations

for Variational Autoencoders, Generative Adversarial Networks, and Denoising Diffusion

Models. Along the way, we described how each of these formulations contribute to their

placement in the deep learning trilemma and discussed some of the specific research which

aims to reduce the negative aspects of these formulations. We also took a detour to describe

DGMs are evaluated empirically. Finally, we discussed some recent literature which aims to

improve existing DGMs through small adjustments of the formulation such as by introducing

vector quantization or by combining different DGMs into a single model to reap the benefits

of each.

Looking at the current state of research in this field, we can obviously expect the trend

of trying to overcome the deep trilemma to continue. We can expect to see many more

combinations and adjustments to existing models in the near future. We can also expect that

the training objectives will get increasingly complex. We have already seen the improvement

of generative networks in image resolution starting from the smallest data sets like MNIST

and CIFAR-10 to larger data sets including ImageNet. A lot of recent research has also

focused on complex and high-resolution conditional video generation tasks [21, 49, 53, 60].

In addition to the continual improvement of DGMs, one very interesting future research

direction is in the creation of smaller network architectures that are far cheaper to train

while still keeping up with the performance of state-of-the-art models. Recently, in 2023,

a leaked report from Google entitled “We have no moat, and neither does OpenAI” [33]
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explained how open-source models that cost on the order of hundreds of dollars are starting

to become competitive against the expensive and extremely large AI models being trained

by companies like Google and OpenAI for millions of dollars. While this particular memo

was discussing the large language models like Google Bard and ChatGPT being caught up

with open source models like LLaMa and Alpaca, we can imagine a similar trend in image

generation models and other generative AI models. Besides the obvious cost-saving benefits

of smaller models, there are also various environmental benefits which reduce the carbon

emission impact of large GPU clusters being used to train expensive models.
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