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Abstract

Structure from Motion (SfM) refers to the process of obtaining the 3D structure of

a scene using a collection of 2D images while simultaneously extracting the internal and

external parameters of the cameras which took those images. This survey briefly ex-

plores factorization methods for SfM before moving on to a more thorough description

of the modern SfM pipeline which utilizes a parameter optimization technique known

as Bundle Adjustment (BA). The challenges and current research trends for many

steps of the SfM pipeline are discussed. The survey concludes with an exploration of

different applications of SfM in domains including robotics, large scale reconstruction

from internet images, and geology, discussing the particular challenges they face and

the constraints they utilize.

1 Introduction

Determining the structure of a scene is a vital task for several computer vision applications.

For example, scene reconstruction methods have been used in geosciences for topographic

surveying [6, 62], preservation of cultural heritage artifacts [23], environment reconstruction

for robotics and augmented reality [38], and is the basis for view synthesis methods like

NeRF, and Gaussian Splatting [30, 39]. While many families of methods for scene recon-

struction from 2D RGB images exist including shape from shading, shape from defocus, and
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more recently shape from learning [55, 61], among the most successful family of methods

is known as Structure from Motion (SfM). In SfM, the 3D positions of stationary scene

points are simultaneously reconstructed from a collection of 2D images along with the poses

of the cameras which captured the images. SfM is similar to other related and sometimes

synonymous methods such as Multiview Stereo (MVS), Photogrammetry, and Simultaneous

Localization and Mapping (SLAM) which can often be seen as specific cases of SfM.

In this survey, we will briefly review factorization methods in §2. Then, we will review the

basics of the optimization approach used in many modern SfM pipelines known as Bundle

Adjustment (BA) in §3. Next, §4 will discuss several of the other steps that make up the

larger SfM pipeline found in modern SfM systems. Following this discussion, we will focus

on how BA has been used for large-scale reconstruction tasks using unordered collections

of hundred to thousands of internet images of famous landmarks in §5. The survey will

conclude with a review of other specific SfM applications in §6 including the use of SfM in

SLAM for robotics applications and the use of SfM in geographic surveying.

2 Factorization Methods

Factorization methods were originally introduced in [56, 57] in the early 90s and feature

an elegant single-iteration global optimization formulation for SfM. Notably, these methods

assume that features have already been matched across all images and assume that internal

camera parameters are already known – i.e., they assume the calibration matrices for the

cameras are given. It is due to these limiting assumptions and their single-iteration for-

mulation that factorization methods have lost the spotlight in recent literature. Compared

to more modern techniques, factorization methods lack scalability, generalizability, and re-

silience to noise. However, they are still useful for creating estimates of scene structure and

camera poses that can then used to initialize BA and are much faster for smaller scenes

where the number of images and features are low. In the remainder of this section, we will
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review the basics behind factorization and its extensions to non-orthographic projections.

2.1 Factorization Under Orthography

The original formulation in [56] for factorization utilized orthographic projection, assuming

that variations in the depth of objects in the scene are small compared to the relative distance

of the scene from the camera. In other words, the magnification for all points in the scene

from all images is constant and the 2D locations of the 3D points are parallel projections onto

each image. Under this assumption, the ufp, vfp coordinates in image f of the projection of

a point p in the scene Pp can be expressed as

ufp = îTf (Pp − Cf )

vfp = ĵTf (Pp − Cf )

where îf , ĵf represent the unit axes of image f from the origin of the image plane in world

coordinates (effectively identifying the orientation of the camera where the third axis kf can

be determined by the cross product îf × ĵf ) and Cf is the position of the camera which

captured image f . Then, we can define the set of scene points {Pp} where p = 1, ..., N and

a set of camera positions {Cf} and orientations {(̂if , ĵf )} where f = 1, ..., F . At this point,

{(ufp, vfp)} are known to us while {Pp}, {Cf}, and {(̂if , ĵf )} are unknown.

We can remove the unknowns {Cf} by setting the origin of the world coordinates at the

centroid of all scene points. The registered image coordinates {(ũfp, ṽfp)} are then:

ũfp = ufp − ūf

ṽfp = vfp − v̄f
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where

ūf =
1

N

N∑
p=1

ufp =
1

N

N∑
p=1

îTf (Pp − Cf ) =
1

N
îTf

N∑
p=1

Pp −
1

N

N∑
p=1

îTf Cf = −îTf Cf

since
∑N

p=1 Pp = 0 because we are assuming the origin O is at the center of all {Pp} and

îTf Cf is a constant. Likewise,

v̄f = −ĵTf Cf .

This finally means that we can express the registered image coordinates as simply:

ũfp

ṽfp

 =

 îTf
ĵTf

Pp.

Now, we can construct an observation matrix W :



ũ11 · · · ũ1N

...
. . .

...

ũF1 · · · ũFN

ṽ11 · · · ṽ1N
...

. . .
...

ṽF1 · · · ṽFN


=



îT1
...

îTF

ĵT1
...

ĵTF



[
P1 · · · PN

]

W2F×N = R2F×3 S3×N

where R is the matrix containing all the camera orientations, and S is the matrix containing

all scene coordinates. Given the sizes of matrices R and S, we know that the rank of the

observation matrix W must be less than or equal to 3. However, since W is likely to contain

4



noise, we can create a rank-3 approximation by doing singular value decomposition (SVD)

on the observation matrix and taking the leading three singular values:

W2F×N = U2F×3 Σ3×3 V
T
3×N .

To actually factorize the SVD into our matrices R and S, we can define

W = RS = U(Σ)1/2Q | Q−1(Σ)1/2V T

where Q is an arbitrary 3× 3 invertible matrix subject to the orthonormality constraints

îTf QQT îf = 1

ĵTf QQT ĵf = 1

îTf QQT ĵf = 0.

2.2 Extension to Perspective Projection

In 1996, [53] proposed an extension of the factorization technique to various other types of

projections. Notably, they introduced a method for perspective projection where they begin

with an equation describing the projection of a 4D point Pb in homogeneous coordinates

being mapped to a 3D point in homogeneous coordinates via a 3 × 4 projection matrix Ca

which occurs up to an unknown scale factor λab called the projective depth:

λabpab = CaPb, a = 1, . . . , n, b = 1 . . . ,m.
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Similar to [56], these projective measurements are collected into a 3n×m observation matrix:

W ≡


λ11p11 · · · λ1mp1m

...
. . .

...

λn1pn1 · · · λnmpnm

 =


C1

...

Cn


[
P1 · · · Pm

]
.

And like the orthographic case, this observation matrix can now be decomposed using SVD

but now up to rank 4. Since we do not have direct access to the projective depths, [53]

considers the system of linear equations for camera pairs (i, j) and point p given by

Fijpjpλpj = (eij ∧ pip)λip

where Fij is the fundamental matrix and eij is the epipole. Note here that the fundamen-

tal matrix satisfies Eij = KT
i FijKj where Ki is the i’th camera’s calibration matrix and

Eij is the essential matrix for the pair of cameras (i, j) [46]. Solving for these linear equa-

tions, the projective depths are estimated up to a global scale and substituted back into the

factorization of the observation matrix into its camera and structure components.

3 Bundle Adjustment

Most modern approaches for SfM utilize a technique known as Bundle Adjustment (BA)

for the joint optimization of 3D structure, camera motion (pose), and possibly also intrinsic

camera parameters (i.e., calibration parameters). The authors of [58] which provide a review

of modern BA techniques provide a concise description for BA as “a large sparse geometric

parameter estimation problem” which is solved using non-linear least squares methods. Es-

sentially, BA techniques aim to minimize what is known as the reprojection error. Starting

off with some estimate of the scene parameters (which include camera poses, point locations,

and potentially intrinsic camera parameters) computed with some other, simpler technique,
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BA is the process of iteratively refining the estimates of those parameters where the loss

function is defined as the difference in the position between the predicted locations of image

features according to the model in each image and the actual locations of those same fea-

tures within the images. More precisely, for an individual 3D feature Xj imaged by cameras

with extrinsic and intrinsic camera parameters defined by Ci satisfies some predictive model

πi(Xj) which provides the estimated location of the point on the image plane of camera i.

Then, given the true measurement of the point on the image plane xij, the feature prediction

error for point Xj in camera i is

∆xij(Ci,Xj) ≡ xij − πi(Xj).

Figure 1: Bundle Adjustment aims to minimize the reprojection error – the difference between
the predicted locations according to the model parameters and the actual observed locations of
scene points. Figure courtesy of [65].

The feature prediction errors are then fed into some pre-determined cost function f(x)

for the set of current parameters x. A common choice for cost function is the sum of

least squares over the reprojection errors (i.e., the L2 norm) [3]. However, [58] argue that

robust, statistically-based error metrics like Maximum Likelihood (ML) and maximum a

posteriori (MAP) which better handle outliers are better choices. In terms of algorithms for

actually solving the non-linear least squares problem, three classes of numerical optimization

techniques exist. These include second-order Newton style methods that have fast iterative

convergence rates but a relatively high cost per iteration, first-order methods such as simple
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gradient descent, and finally, sequential methods that begin with a smaller subset of images

and incorporate more observations one-by-one instead of solving globally for the whole system

[46]. In recent literature, as the focus on SfM has shifted from well structured data sets

to larger, unordered data sets, the Levenberg-Marquardt algorithm has gained popularity

for its ability to handle more dense connectivity graphs (see §4.2 for more information on

connectivity graphs) [3, 49, 58].

3.1 The Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm (LM), which was originally introduced in [40], is the

most popular algorithm for solving non-linear least squares in BA. The main objective of

LM is to minimize the sum of squares of residuals between observed and predicted values. It

iteratively adjusts the parameters of a nonlinear model to minimize the discrepancy between

the model predictions and the actual data. At each iteration, the algorithm computes an

update to the parameter vector by solving a modified linear least squares problem. This

modification includes a damping term that adapts dynamically based on the progress of the

optimization. The damping parameter controls the trade-off between the gradient descent

direction and the Gauss-Newton direction, allowing the algorithm to navigate efficiently

through the parameter space while ensuring convergence stability. LM combines the ad-

vantages of both the gradient descent method and the Gauss-Newton method. It is robust,

efficient, and suitable for solving non-linear optimization problems with a large number of

parameters. Additionally, it can handle ill-conditioned problems and is less sensitive to the

choice of initial parameters compared to some other optimization techniques.

3.2 The Schur Complement Trick

For most cases, the recommended method for solving the LM algorithm is to use QR factor-

ization. However, the special sparsity structure of BA enables the use of a method known
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as the Schur complement trick [3]. In the LM algorithm, at each iteration, a linear sys-

tem of equations involving the Hessian matrix is solved which represents the second-order

derivatives of the objective function with respect to the parameters. This Hessian matrix for

large-scale BA problems that have many parameters can be very sparse. The Schur comple-

ment trick exploits the sparsity structure of the Hessian matrix to decompose it into smaller,

more manageable blocks. Specifically, it splits the Hessian matrix into four submatrices: the

top-left block corresponding to the Gauss-Newton approximation, the bottom-right block

representing the damping term, and the remaining off-diagonal blocks.

By applying the Schur complement formula, the inverse of the Hessian matrix can be

expressed in terms of the inverses of the above-mentioned smaller blocks. This decomposition

allows for more efficient computations, as it reduces the computational complexity of solving

the linear system. In the LM algorithm, the Schur complement trick is typically used to

compute the update direction of the parameters. Instead of directly inverting the entire

Hessian matrix, the update direction can be computed by solving a smaller linear system

involving only the Gauss-Newton approximation and the damping term. This reduces the

computational cost and improves the efficiency of the optimization process. For a more

complete mathematical description of the LM algorithm and the use of the Schur complement

trick, the reader is directed to §2.1 and §2.2 of [3].

4 The Larger SfM Pipeline

The BA optimization process introduced in §3 is actually often the last step in a much larger

SfM pipeline which encapsulates several other areas of active research. The overall pipeline

can be more accurately described as consisting of three main steps: 1) feature extraction

and matching, 2) camera parameter estimation, and 3) scene reconstruction, with BA being

a member of this last step. In this section, we will cover some of these steps in more detail

and explain the challenges and current research being done to improve the performance and
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efficiency of SfM methods.

Figure 2: An example SfM pipeline. In particular, this figure represents the incremental SfM
pipeline as shown in [49] in which the incremental reconstruction loop is repeated until convergence.

4.1 Feature Extraction and Matching

The first step in any SfM pipeline is the determination of features in images and the matching

of those features between the images. The most popular and traditional technique for feature

extraction is known as the Scale Invariant Feature Transform (SIFT) first introduced in [35,

36]. SIFT has been used as the primary feature extraction method used in a variety of

popular SfM publications and packages including [9, 51, 64].

The SIFT algorithm begins by constructing a scale-space representation of the input

image using Gaussian blurring and down-sampling, which helps in detecting features across

different scales. It then subtracts consecutive scale space Gaussians from each other to create

Difference of Gaussian (DoG) images (see figure 3). Local extrema in these DoG images

are then identified as potential keypoints. These keypoints are then adjusted or pruned by

a process known as localization where the algorithm computes the precise location and scale

of each keypoint based on a Taylor series expansion of the scale-space function. During the

localization process, candidates that have low contrast or are poorly localized along an edge

are removed.

Once keypoints are localized, SIFT assigns an orientation to each keypoint to achieve

invariance to image rotation. This is done by computing gradient magnitudes and orien-

tations in the local neighborhood of each keypoint and selecting the dominant orientation.
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Figure 3: The scale space representation used in SIFT courtesy of [35]. The initial image is
repeatedly convolved with Gaussians to produce the scale space of images. Consecutive Gaussian
images are subtracted from one another to create the DoG images. Each consecutive octave is
down-sampled by a factor of 2.

Keypoints are then described using a histogram of gradient orientations in their vicinity,

resulting in a highly distinctive feature vector known as the SIFT descriptor (see figure 4).

Figure 4: A keypoint descriptor is formed by computing gradient magnitude and orientation
at sample points surrounding the keypoint. These values are weighted by a Gaussian window and
aggregated into orientation histograms over 4x4 subregions. The length of arrows in the histograms
represents the sum of gradient magnitudes in each direction within the region. Courtesy of [35].

One of the key advantages of SIFT is its robustness to variations in illumination, view-

point changes, and partial occlusions due to its scale and rotation invariance properties.

These properties make it particularly well-suited for applications like SfM, where robust

feature detection and matching across multiple images are essential for accurate scene re-

construction.

While SIFT generally has good performance, its computational complexity and memory
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requirements have led to various techniques which aim to improve its efficiency including

simple optimizations by parallelizing the algorithm using the GPU [27]. Additionally, similar

feature descriptor creation techniques like Histogram of Gradients (HoG) and Speeded Up

Robust Features (SURF) have since been released which compete with SIFT in accuracy and

beat it in speed [4, 11]. HoG captures the local gradient information in an image by dividing

it into small cells and computing histograms of gradient orientations within each cell. These

histograms are then normalized to enhance robustness against changes in illumination and

contrast. The HoG descriptor effectively captures the local edge and gradient patterns,

providing a compact representation of image structure. SURF on the other hand is similar

to SIFT but utilizes integral images and Haar wavelets to create the feature descriptors.

More recent literature on detecting and creating feature descriptors has focused on learn-

ing image descriptors without neural networks using methods like Linear Discriminant Anal-

ysis (LDA) and Powell minimization [5], and other literature utilizing neural networks to

enhance feature detection. For example, it has been shown that convolutional neural net-

works (CNNs) which can learn image features outperform SIFT on feature detection and

even feature matching [14]. Other literature has incorporated CNNs into the larger SfM

pipeline to optimize the featuremetric error of keypoints based on dense features learned

by a CNN to achieve sub-pixel accuracy on keypoint localization and boast results with

close-to-LiDAR levels of accuracy [32].

4.2 Feature Tracks and Connectivity Graphs

Typically, for larger scale SfM, we can expect that the number of scene points is several

orders of magnitude higher than the number of images in the SfM instance. For example, in

some literature, the data sets used have on the order of 103 images with 106 3D structure

points [19] while in others, the numbers are in the massive order of 106 images with 109 3D

feature points [2]. Therefore, a key challenge in SfM is to efficiently process the data. A

common strategy is to initialize BA with a small subset of the images and then iteratively
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add features from additional images. However, this requires the creation of feature tracks

which are a collection of images that share the same features, and connectivity graphs that

indicate which images share features. For structured datasets (e.g., images that have been

captured from a moving truck), we expect the connectivity graph to be very sparse and

feature a band-diagonal structure which can be exploited. However, for unstructured data

sets like community photo collections of, say, famous tourist locations where many images

are taken from similar locations of the same objects, we can expect the connectivity graph

to be far more dense (see figure 5) [3].

Figure 5: (a) A sparse connectivity graph for a structured data set taken from a moving truck. (b)
A comparatively dense connectivity graph for an unstructured data set taken from a community
photo collection. Figure courtesy of [3].

The creation of the connectivity graphs in themselves can be extremely computationally

expensive. Even in the simpler case of 103 images each with an order of 104 features, a

brute force comparison of image features for matching would require 107 feature descriptor

comparisons. By some accounts, image matching can occupy half of the computational cost

of the entire SfM pipeline and inaccurate matches can cause failures in the reconstruction [7].

Solutions to increase the efficiency of determining connectivity graphs include incorporating

Bag of Words (BoW) methods which create histograms of the feature descriptors and com-

pare those histograms instead of the feature descriptors themselves. One popular addition

to BoW methods is Total Recall which was proposed in [8] which utilizes query expansion

with BoW. This effectively adds other relevant visual features to the BoW search criteria,

enabling more robust feature matching. Other approaches create vocabulary trees structured

as Kd-trees to improve the lookup of matching images features [44]. In production libraries
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for SfM, the preferred method for image matching is to use a cascade hashing approach as

described in [7]. Cascade hashing creates hash tables with extremely fast lookups that can

be created without needing to train on the data. This process can be seen as similar to the

construction of Kd-trees since they utilize multiple hashing stages which iteratively refine

the hash codes. This method has been shown to be up to around 300 times faster than brute

force methods and up to 10 times faster than Kd-tree methods [7].

4.3 Geometric Verification

Since feature matching is solely based on appearance, there is no guarantee that correspond-

ing features actually map to the same point in the scene. Therefore, many SfM pipelines

incorporate a geometric verification step which validates image matches using projective

geometry. In particular, a homography matrix H can be calculated using a simple least

squares approach which describes a pure transformation consisting of a translation and rota-

tion from the image coordinates of one frame to another. If there exists a valid homography

transformation which maps a sufficient number of features between two matching candidate

images, then they are geometrically verified [49]. To search for such a homography matrix,

a technique for filtering noisy correspondences is used known as Random Sample Consensus

(RANSAC) [15]. As the name suggests, RANSAC begins by, 1) choosing s random samples.

Then, 2) it uses those s samples to do a least-squares fit for the homography matrix. Note

that s is often chosen to be the minimum number of samples needed to fit the homography

matrix. Once the least squares fit is computed, 3) the model is applied to all correspondence

points and the number of inliers m are determined which lie within some predefined thresh-

old. Next, steps 1 to 3 are repeated for n iterations. Finally, the model with the highest

number of inliers is chosen and the model is optionally re-fit to those inliers.
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Figure 6: Random Sample Consensus (RANSAC) is utilized in the geometric verification step to
increase the estimated model’s redundancy to noise. Compared to linear least squares fit, RANSAC
chooses a model that maximizes the number of inliers.

4.4 Initialization

Initialization for BA is important since it is non-convex. Consequently, poor initialization can

cause the optimization process to get stuck in a local minima. The particular method chosen

for initialization is generally dependent on the particular structure of a given SfM instance.

For example, [49] aims to create a general SfM pipeline so they initialize with a carefully

selected two-view reconstruction. To improve robustness, accuracy, and performance, the

seed location is chosen to be at a dense location in the scene graph – i.e., in a location with

many overlapping camera views. However, if lower run-times are desired, a sparser location

can be chosen which in turn will mean more iterations of the BA optimization will be sparse.

The rest of the scene is then reconstructed by sequentially incorporating more images, either

one-by-one or in small groups.

On the other hand, [52] suggest the creation of a skeletal set in a similar vein to [49] of

initializing with a small subset of the images then sequentially adding more images. However,

instead of just two views, the skeletal set method allows an initial reconstruction with an

accuracy that approximates the complete set by choosing views from the connectivity graph
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that effectively maximize the number of features per image. The remaining images can

then be incorporated by estimating their pose relative to the existing detected features in

the initial reconstruction and a final BA step can be used to improve the accuracy of the

reconstruction.

The main idea behind the construction of the skeletal set is to identify a directed measure

of proximity between cameras in the image graph given by the translational uncertainty in

each pairwise reconstruction of cameras [52]. The proximity measure is quantified by the

trace of the covariance matrix of the Schur complement of the camera pair. Given this

measure of proximity, the goal is to identify the smallest subset of cameras such that the

length of the shortest path (in terms of total uncertainty of the path) between any pair of

cameras is at most some pre-determined stretch factor t times longer than their distance

in the original image graph. Note that the image graph mentioned here is similar to the

connectivity graphs mentioned above, except that the edges are now weighted directed edges

with the weights set by the trace of the covariance matrices as mentioned earlier. When edges

in this graph are removed to create the skeletal set, the lengths of the shortest paths between

two nodes can increase (i.e., the sum of the weighted edges of the shortest path) and the goal

is to remove edges such that the increase in this path length is minimized. Unfortunately,

this process is NP-complete, so a two-step heuristic is used to approximate the skeletal set.

This method has been shown to significantly increase the overall efficiency and accuracy of

SfM reconstructions compared to pre-existing SfM methods that were applied on the entire

set of images. For more details on skeletal sets and their construction, the reader is directed

to [52].

4.5 Image Registration and Triangulation

As mentioned, since many SfM pipelines utilize sequential reconstruction techniques, a chal-

lenge that arises is registering new images to the current model. This problem is also known

as the Perspective-n-Point (PnP) problem and is solved by utilizing feature correspondences

16



to existing triangulated points from images that have already been registered. Lepetit et. al.

[31] propose a non-iterative solution to the PnP problem called EPnP with a time complexity

of O(n) (compared to other techniques which had a complexity of O(n5) or even O(n8)).

Their method, which is applicable to all PnP problems where n ≥ 4, expresses the n 3D

points as a weighted sum of just four virtual control points. Then, the problem effectively

reduces to estimating the coordinates of the control points in the camera referential. This

can be done in O(n) time by expressing the control point coordinates as the weighted sum

of eigenvectors of a twelve by twelve matrix and solving a few quadratic equations to choose

the right weights. Other methods such as [20] utilize RANSAC (see §4.4) and a minimal

pose solver to make pose estimates from outlier-contaminated 2D-3D correspondences.

Once a new image is registered to the existing points, new scene points can be triangulated

as long as at least one other registered image in the set from a different viewpoint contains

those scene points. Multiple methods for optimal triangulation exist. For example, [29]

propose a robust multi-view L2 triangulation approach based on optimal inlier selection and

3D structure refinement. However, for production systems, [49] propose a novel method for

handling outlier contaminated feature tracks. They argue that for sparsely matched image

collections, transitive correspondences can boost triangulation performance. Most matching

techniques favor images that highly overlap and are visually similar in appearance, leading

to correspondences with a small baseline. Larger baselines can be achieved by utilizing

transitivity which in turn can enable better triangulation. Triangulation is the last step

in a typical SfM pipeline before iterative BA is performed to optimize the initial estimates

created by the steps up to this point (see §3).

5 BA with Large Unordered Collections

A significant portion of BA literature has focused on expanding BA methods to large scale,

unordered collections of internet images of famous tourist locations and even entire cities [2,
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Figure 7: Four different views of the city of Dubrovnik with the corresponding view of the recon-
struction. This reconstruction consisted of 4,585 images and 2,662,981 3D points with 11,839,682
observed features. Figure courtesy of [2].

3, 17, 19, 22, 43, 47]. Such large scale reconstructions have several commercial applications

in entertainment for reconstruction of cities used in movies, digital mapping for services like

Google Maps (including interactive reconstructions of popular tourist destinations), urban

planning, and training in simulation for civil services that benefit from a virtual urban

recreation like fire and police departments [43].

These sorts of data sets pose several unique challenges due to the sheer volume, het-

erogeneity, and unstructured nature of the data. Firstly, the scale of such datasets can be

enormous, making traditional BA techniques computationally prohibitive. Additionally, in-

ternet images often vary widely in terms of quality, resolution, viewpoint, lighting conditions,

and occlusions, leading to inconsistent feature detection and matching. Furthermore, inter-

net images may lack metadata or accurate camera calibration information, complicating the

initialization and optimization stages of BA. Moreover, the unordered nature of the image

collection poses difficulties in establishing reliable correspondences across images, as tradi-

tional sequential approaches for BA may not be applicable. Consequently, robust feature

matching, outlier rejection, and efficient optimization algorithms tailored to handle large-

scale, unordered datasets are necessary to overcome these challenges and achieve accurate

scene reconstructions. Many of the extensions to traditional BA methods discussed in §3

and §4 were specifically created to handle the exacerbated difficulties of large-scale unordered
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data. For instance, many large scale SfM packages utilize the BoW and query expansion

methods for feature matching and use parallelized variants of SIFT on GPUs [8, 27].

6 Other SfM Applications

To wrap up this survey, we wish to introduce a few related SfM applications along with their

unique challenges and the specific constraints those applications can utilize.

6.1 Visual SLAM

The Visual Simultaneous Localization and Mapping (SLAM) problem in robotics involves

the real-time estimation of a robot’s trajectory and map of its environment using visual data

obtained from its cameras. This task is essential for autonomous navigation as it allows

robots to localize themselves within unknown environments while simultaneously building a

map of their surroundings. It can also be useful in AR applications which require knowledge

of the user’s surroundings to overlay virtual objects. The visual SLAM problem has been

studied extensively by the robotics community, particularly as a cheaper alternative to other

SLAM methods such as using RGB-D cameras that incorporate time-of-flight sensors or

Light Detection and Ranging (LiDAR) [12, 18, 38, 54].

Like the SfM pipeline in computer vision, Visual SLAM involves several, similar steps.

First, feature detection and tracking are performed using methods like SIFT mentioned above

to identify distinctive points or landmarks in the visual data and track their movements

across frames. Next, correspondences between these features are established to estimate

the relative motion between consecutive frames. Once the relative motion is estimated, the

robot’s pose is updated using BA. One distinction between SLAM and large-scale SfM is

that the connectivity graph for SLAM image features will necessarily be more sparse and

structured since images are captured from a single moving source. Additionally, SLAM does

not require the computation of intrinsic camera parameters since those parameters are often
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given or can be separately determined.

Despite similarities to the SfM pipeline, Visual SLAM introduces additional challenges

due to the real-time nature of robotics applications and the need to handle sensor noise, un-

certainties in motion estimation, and dynamic environments. Therefore, Visual SLAM algo-

rithms often employ techniques such as Kalman filtering, particle filtering, or optimization-

based methods to robustly estimate the robot’s pose and map while accounting for these

challenges [38].

6.2 SfM in Geosciences

Many geoscience applications require the collection of topographic data such as terrain map-

ping, geomorphological terrain analysis, monitoring of geological features, and digital eleva-

tion modelling. Traditional methods for acquiring topographic data such as terrestrial laser

scanning (TLS) or LiDAR are often prohibitively expensive and are not conducive to re-

mote or otherwise hostile locations. For these reasons, SfM has been proposed as a low-cost,

portable tool for acquiring topographic data [6, 16, 62].

Similar to the application of SfM in visual SLAM, images for geoscience applications

are often taken by just a few ground-based cameras capturing panoramic views or by a

relatively cheap drone or Unmanned Aerial Vehicle (UAV) both of which can take highly

structured images of a target landscape. Also, like in SLAM, the intrinsic camera parameters

are usually known or can be determined. Another constraint that can be used for geoscience

SfM is GPS localization, i.e., a fairly precise GPS location is often known for captured images

which can help increase the accuracy of reconstructions. Finally, for accessible landscapes,

clearly identifiable control points with precisely known positions can be used to constrain the

reconstruction. Often these control points are physically placed markers on the landscape

and can be easily distinguished by having an identifiable color compared to the rest of the

landscape (see figure 8 )[62].
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Figure 8: Views of Constitution Hill showcasing the use of SfM in geoscience. a) A panoramic
image of the survey location with clearly identifiable yellow control points. b) A sparse point cloud
reconstruction of the scene. c) A dense point cloud reconstruction. Figure courtesy of [62].

7 Conclusion

In this survey, we briefly reviewed the factorization method for structure from motion and its

extensions to projective projections, explained the limitations of factorization methods, then

introduced bundle adjustment, a non-linear parameter estimation problem which is the pri-

mary optimization technique used in modern SfM pipelines. Then, we reviewed the key steps

in the SfM pipeline and provided brief descriptions of the common techniques used in each

step and some of the ongoing research being done to improve the performance or efficiency of

those steps. Finally, we discussed specific applications of SfM in large scale reconstructions

from unordered collections, a technique similar to SfM known as visual SLAM which is used

in robotics and augmented reality applications, and SfM for topographic measurements in

geoscience applications.

Extrapolating from the current state of research in SfM, we predict that there are two

main areas in which SfM will continue to grow: speed and accuracy. The general SfM
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pipeline has been established for nearly two decades and the research since has focused on

generalizing SfM to handle larger and more complex data sets [2, 3, 19, 26] or to creating

ever finer reconstructions [10, 32]. Therefore a prediction that this will continue to be the

trend is fairly obvious.

Besides the obvious expected improvements in speed and accuracy, another area in which

we expect future research to be conducted is in task-specific SfM. By this, we are referring

instances where specific constraints can be utilized to simplify the SfM problem. This is op-

posed to the current trend of ever-increasing generalizability that has been the focus of recent

research (e.g., [49]). For example, in augmented reality or virtual reality applications, the

camera motion is often known from other, non-visual sources such as Inertial Measurement

Units (IMUs) which can constrain SfM to real-time depth estimation.
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[40] Jorge J Moré. “The Levenberg-Marquardt algorithm: implementation and theory”. In:
Numerical analysis: proceedings of the biennial Conference. Springer. 1977, pp. 105–
116.

[41] Etienne Mouragnon et al. “Generic and real-time structure from motion using local
bundle adjustment”. In: Image and Vision Computing 27.8 (2009), pp. 1178–1193.

[42] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. “ORB-SLAM: a
versatile and accurate monocular SLAM system”. In: IEEE transactions on robotics
31.5 (2015), pp. 1147–1163.

[43] Przemyslaw Musialski et al. “A survey of urban reconstruction”. In: Computer graphics
forum. Vol. 32. 6. Wiley Online Library. 2013, pp. 146–177.

[44] David Nister and Henrik Stewenius. “Scalable recognition with a vocabulary tree”. In:
2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06). Vol. 2. Ieee. 2006, pp. 2161–2168.

[45] David Nistér. “An efficient solution to the five-point relative pose problem”. In: IEEE
transactions on pattern analysis and machine intelligence 26.6 (2004), pp. 756–770.

25
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